Genetic segregation of airway disease traits despite redundancy of calcium-activated chloride channel family members.
نویسندگان
چکیده
Complex airway diseases such as asthma and chronic obstructive pulmonary disease exhibit stereotyped traits (especially airway hyperreactivity and mucous cell metaplasia) that are variably expressed in each patient. Here, we used a mouse model for virus-induced long-term expression of these traits to determine whether individual traits can be genetically segregated and thereby linked to separate determinants. We showed that an F2 intercross population derived from susceptible and nonsusceptible mouse strains can manifest individual phenotypic extremes that exhibit one or the other disease trait. Functional genomic analysis of these extremes further indicated that a member of the calcium-activated chloride channel (CLCA) gene family designated mClca3 was inducible with mucous cell metaplasia but not airway hyperreactivity. In confirmation of this finding, we found that mClca3 gene transfer to mouse airway epithelium was sufficient to induce mucous cell metaplasia but not airway hyperreactivity. However, newly developed mClca3(-/-) mice exhibited the same degree of mucous cell metaplasia and airway hyperreactivity as wild-type mice. Bioinformatic analysis of the Clca locus led to the identification of mClca5, and gene transfer indicated that mClca5 also selectively drives mucous cell metaplasia. Thus, in addition to the capacity of CLCA family members to exhibit diverse functional activities, there is also preserved function so that more than one family member mediates mucous cell metaplasia. Nonetheless, Clca expression appears to be a selective determinant of mucous cell metaplasia so that shared homologies between CLCA family members may still represent a useful target for focused therapeutic intervention in hypersecretory airway disease.
منابع مشابه
A Novel Missense Mutation in CLCN1 Gene in a Family with Autosomal Recessive Congenital Myotonia
Congenital recessive myotonia is a rare genetic disorder caused by mutations in CLCN1, which codes for the main skeletal muscle chloride channel ClC-1. More than 120 mutations have been found in this gene. The main feature of this disorder is muscle membrane hyperexcitability. Here, we report a 59-year male patient suffering from congenital myotonia. He had transient generalized myotonia, which...
متن کاملFunctional expression of the TMEM16 family of calcium-activated chloride channels in airway smooth muscle.
Airway smooth muscle hyperresponsiveness is a key component in the pathophysiology of asthma. Although calcium-activated chloride channel (CaCC) flux has been described in many cell types, including human airway smooth muscle (HASM), the true molecular identity of the channels responsible for this chloride conductance remains controversial. Recently, a new family of proteins thought to represen...
متن کاملExpression Cloning of TMEM16A as a Calcium-Activated Chloride Channel Subunit
Calcium-activated chloride channels (CaCCs) are major regulators of sensory transduction, epithelial secretion, and smooth muscle contraction. Other crucial roles of CaCCs include action potential generation in Characean algae and prevention of polyspermia in frog egg membrane. None of the known molecular candidates share properties characteristic of most CaCCs in native cells. Using Axolotl oo...
متن کاملNiflumic acid suppresses interleukin-13-induced asthma phenotypes.
RATIONALE Chloride channels have been implicated in the regulation of mucus production in epithelial cells. Expression of hCLCA1, a calcium-activated chloride channel, has been reported to be increased in the airway epithelium of patients with asthma. Interleukin (IL)-13 induces the cardinal features of bronchial asthma, and glucocorticoids are not sufficient to suppress IL-13-induced airway hy...
متن کاملInterspecies diversity of chloride channel regulators, calcium-activated 3 genes
Members of the chloride channel regulators, calcium-activated (CLCA) family, have been implicated in diverse biomedical conditions, including chronic inflammatory airway diseases such as asthma, chronic obstructive pulmonary disease, and cystic fibrosis, the activation of macrophages, and the growth and metastatic spread of tumor cells. Several observations, however, could not be repeated acros...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physiological genomics
دوره 25 3 شماره
صفحات -
تاریخ انتشار 2006